Direct Linear Transformation: Practical Applications and Techniques in Computer Vision

One Billion Knowledgeable · AI ບັນຍາຍໂດຍ Maxwell (ຈາກ Google)
ປຶ້ມສຽງ
3 ຊົ່ວໂມງ 8 ນາທີ
ສະບັບເຕັມ
ມີສິດ
ບັນຍາຍໂດຍ AI
ບໍ່ໄດ້ຢັ້ງຢືນການຈັດອັນດັບ ແລະ ຄຳຕິຊົມ ສຶກສາເພີ່ມເຕີມ
ຕ້ອງການຕົວຢ່າງ 18 ນາທີ ບໍ? ຟັງໄດ້ທຸກເວລາ, ເຖິງແມ່ນໃນເວລາອອບລາຍຢູ່ກໍຕາມ. 
ເພີ່ມ

ກ່ຽວກັບປຶ້ມອ່ານອອກສຽງ

What is Direct Linear Transformation


Direct linear transformation, also known as DLT, is an algorithm that solves a set of variables by using a set of similarity relations as the working set. In the field of projective geometry, this kind of relation is encountered quite frequently. Examples that are applicable to real-world situations include homographies and the relationship between three-dimensional points in a scene and their projection onto the image plane of a pinhole camera.


How you will benefit


(I) Insights, and validations about the following topics:


Chapter 1: Direct linear transformation


Chapter 2: Linear map


Chapter 3: Linear subspace


Chapter 4: Cholesky decomposition


Chapter 5: Invertible matrix


Chapter 6: Quadratic form


Chapter 7: Homogeneous function


Chapter 8: Kernel (linear algebra)


Chapter 9: Plücker coordinates


Chapter 10: TP model transformation in control theory


(II) Answering the public top questions about direct linear transformation.


(III) Real world examples for the usage of direct linear transformation in many fields.


Who this book is for


Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Direct Linear Transformation.

ໃຫ້ຄະແນນປຶ້ມສຽງນີ້

ບອກພວກເຮົາວ່າທ່ານຄິດແນວໃດ.

ຂໍ້ມູນການຟັງ

ສະມາດໂຟນ ແລະ ແທັບເລັດ
ຕິດຕັ້ງ ແອັບ Google Play Books ສຳລັບ Android ແລະ iPad/iPhone. ມັນຊິ້ງຂໍ້ມູນໂດຍອັດຕະໂນມັດກັບບັນຊີຂອງທ່ານ ແລະ ອະນຸຍາດໃຫ້ທ່ານອ່ານທາງອອນລາຍ ຫຼື ແບບອອບລາຍໄດ້ ບໍ່ວ່າທ່ານຈະຢູ່ໃສ.
ແລັບທັອບ ແລະ ຄອມພິວເຕີ
ທ່ານສາມາດອ່ານປຶ້ມທີ່ຊື້ຜ່ານ Google Play ໂດຍໃຊ້ໂປຣແກຣມທ່ອງເວັບຂອງຄອມພິວເຕີໄດ້.

ເພີ່ມເຕີມຈາກ Fouad Sabry

ປຶ້ມອ່ານອອກສຽງທີ່ຄ້າຍຄືກັນ

ບັນຍາຍໂດຍ Maxwell