Machine Learning Fundamentals Course

THE PUBLISHER · AI 朗讀:Mason (來自 Google)
有聲書
2 小時 7 分鐘
完整足本
符合資格
AI 朗讀
評分和評論未經驗證 瞭解詳情
要試聽 12 分鐘 嗎?隨時聆聽,離線亦可。 
新增

關於這本有聲書

This Machine Learning Fundamentals Course provides a comprehensive introduction to the field of machine learning. It covers a wide range of topics, starting with an overview of what machine learning is and its historical development. The course then delves into the basics of machine learning, including data preprocessing, feature engineering, and model evaluation.

The course explores both supervised and unsupervised learning techniques, such as linear regression, logistic regression, decision trees, and clustering algorithms. It also covers model optimization and regularization, including cross-validation, hyperparameter tuning, and regularization techniques.

One of the highlights of the course is the chapter on neural networks and deep learning, which introduces participants to the fundamentals of neural networks, convolutional neural networks, and recurrent neural networks. The course also covers natural language processing, recommender systems, transfer learning, model deployment, ethical considerations in machine learning, anomaly detection, reinforcement learning, time series analysis, and advanced topics such as ensemble learning and explainable AI.

This course provides a solid foundation in machine learning, equipping participants with the necessary knowledge and skills to build and deploy machine learning models in real-world scenarios. Whether you are a beginner or an experienced practitioner, this course offers valuable insights into the fundamental concepts and techniques of machine learning.

為這本有聲書評分

請分享你的寶貴意見。

聆聽資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網頁瀏覽器閱讀從 Google Play 購買的書籍。

更多Brian Smith的著作

類似的有聲書

旁白:Mason