Optimizing Large Language Models Practical Approaches and Applications of Quantization Technique

Anand Vemula · Dinarasikan oleh Madison (dari Google)
Buku Audio
1 jam 51 menit
Tidak diringkas
Dinarasikan oleh AI
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut
Ingin sampel selama 11 menit? Dengarkan kapan saja, meski saat offline. 
Tambahkan

Tentang buku audio ini

 The book provides an in-depth understanding of quantization techniques and their impact on model efficiency, performance, and deployment.

The book starts with a foundational overview of quantization, explaining its significance in reducing the computational and memory requirements of LLMs. It delves into various quantization methods, including uniform and non-uniform quantization, per-layer and per-channel quantization, and hybrid approaches. Each technique is examined for its applicability and trade-offs, helping readers select the best method for their specific needs.

The guide further explores advanced topics such as quantization for edge devices and multi-lingual models. It contrasts dynamic and static quantization strategies and discusses emerging trends in the field. Practical examples, use cases, and case studies are provided to illustrate how these techniques are applied in real-world scenarios, including the quantization of popular models like GPT and BERT.

Tentang pengarang

AI Evangelist with 27 years of IT experience

Beri rating buku audio ini

Sampaikan pendapat Anda.

Informasi untuk mendengarkan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat membaca buku yang dibeli di Google Play menggunakan browser web komputer.

Lainnya oleh Anand Vemula

Buku audio serupa

Dinarasikan oleh Madison