ABSTRACT ALGEBRA AND LINEAR ALGEBRA

Ram Prasad Publications(R.P.H.)
5,0
1 recenzija
E-knjiga
472
str.
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

– Unit-I –

1.1 Historical background :

1.1.1 A brief historical background of the Algebra in the context of India and Indian heritage and culture

1.1.2 A brief biography of Brahmagupta

1.2 Groups, Subgroups and their basic properties

1.3 Cyclic groups

1.4 Coset decomposition

1.5 Lagrange’s and Fermat’s theorem

1.6 Normal subgroups

1.7 Quotient groups

– Unit-II –

2.1 Homomorphism and Isomorphism of groups

2.2 Fundamental theorem of homomorphism

2.3 Transformation and Permutation group Sn(n < 5)

2.4 Cayley’s theorem

2.5 Group automorphism

2.6 Inner automorphism

2.7 Group of automorphisms

– Unit-III –

3.1 Definition and basic properties of rings

3.2 Ring homomorphism

3.3 Subring

3.4 Ideals

3.5 Quotient ring

3.6 Polynomial ring

3.7 Integral domain

3.8 Field

– Unit-IV –

4.1 Definition and examples of Vector space

4.2 Subspaces

4.3 Sum and direct sum of subspaces

4.4 Linear span, Linear dependence, Linear independence and Their basic properties

4.5 Basis

4.6 Finite dimensional vector space and dimension

4.6.1 Existence theorem

4.6.2 Extension theorem

4.6.3 Invariance of the number of elements

4.7 Dimension of sum of subspaces

4.8 Quotient space and its dimension

– Unit-V –

5.1 Linear transformation and its representation as a matrix

5.2 Algebra of linear transformation

5.3 Rank-Nullity theorem

5.4 Change of basis, dual space, bi-dual space and natural isomorphism

5.5 Adjoint of a linear transformation

5.6 Eigenvalues and Eigenvectors of a linear transformation

5.7 Diagonalization

Ocjene i recenzije

5,0
1 recenzija

Ocijenite ovu e-knjigu

Recite nam što mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinkronizira s vašim računom i omogućuje vam da čitate online ili offline gdje god bili.
Prijenosna i stolna računala
Audioknjige kupljene na Google Playu možete slušati pomoću web-preglednika na računalu.
Elektronički čitači i ostali uređaji
Za čitanje na uređajima s elektroničkom tintom, kao što su Kobo e-čitači, trebate preuzeti datoteku i prenijeti je na svoj uređaj. Slijedite detaljne upute u centru za pomoć za prijenos datoteka na podržane e-čitače.