ABSTRACT ALGEBRA AND LINEAR ALGEBRA

Ram Prasad Publications(R.P.H.)
5,0
1 recensione
Ebook
472
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

– Unit-I –

1.1 Historical background :

1.1.1 A brief historical background of the Algebra in the context of India and Indian heritage and culture

1.1.2 A brief biography of Brahmagupta

1.2 Groups, Subgroups and their basic properties

1.3 Cyclic groups

1.4 Coset decomposition

1.5 Lagrange’s and Fermat’s theorem

1.6 Normal subgroups

1.7 Quotient groups

– Unit-II –

2.1 Homomorphism and Isomorphism of groups

2.2 Fundamental theorem of homomorphism

2.3 Transformation and Permutation group Sn(n < 5)

2.4 Cayley’s theorem

2.5 Group automorphism

2.6 Inner automorphism

2.7 Group of automorphisms

– Unit-III –

3.1 Definition and basic properties of rings

3.2 Ring homomorphism

3.3 Subring

3.4 Ideals

3.5 Quotient ring

3.6 Polynomial ring

3.7 Integral domain

3.8 Field

– Unit-IV –

4.1 Definition and examples of Vector space

4.2 Subspaces

4.3 Sum and direct sum of subspaces

4.4 Linear span, Linear dependence, Linear independence and Their basic properties

4.5 Basis

4.6 Finite dimensional vector space and dimension

4.6.1 Existence theorem

4.6.2 Extension theorem

4.6.3 Invariance of the number of elements

4.7 Dimension of sum of subspaces

4.8 Quotient space and its dimension

– Unit-V –

5.1 Linear transformation and its representation as a matrix

5.2 Algebra of linear transformation

5.3 Rank-Nullity theorem

5.4 Change of basis, dual space, bi-dual space and natural isomorphism

5.5 Adjoint of a linear transformation

5.6 Eigenvalues and Eigenvectors of a linear transformation

5.7 Diagonalization

Valutazioni e recensioni

5,0
1 recensione

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.