ABSTRACT ALGEBRA AND LINEAR ALGEBRA

Ram Prasad Publications(R.P.H.)
5,0
1 recension
E-bok
472
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

– Unit-I –

1.1 Historical background :

1.1.1 A brief historical background of the Algebra in the context of India and Indian heritage and culture

1.1.2 A brief biography of Brahmagupta

1.2 Groups, Subgroups and their basic properties

1.3 Cyclic groups

1.4 Coset decomposition

1.5 Lagrange’s and Fermat’s theorem

1.6 Normal subgroups

1.7 Quotient groups

– Unit-II –

2.1 Homomorphism and Isomorphism of groups

2.2 Fundamental theorem of homomorphism

2.3 Transformation and Permutation group Sn(n < 5)

2.4 Cayley’s theorem

2.5 Group automorphism

2.6 Inner automorphism

2.7 Group of automorphisms

– Unit-III –

3.1 Definition and basic properties of rings

3.2 Ring homomorphism

3.3 Subring

3.4 Ideals

3.5 Quotient ring

3.6 Polynomial ring

3.7 Integral domain

3.8 Field

– Unit-IV –

4.1 Definition and examples of Vector space

4.2 Subspaces

4.3 Sum and direct sum of subspaces

4.4 Linear span, Linear dependence, Linear independence and Their basic properties

4.5 Basis

4.6 Finite dimensional vector space and dimension

4.6.1 Existence theorem

4.6.2 Extension theorem

4.6.3 Invariance of the number of elements

4.7 Dimension of sum of subspaces

4.8 Quotient space and its dimension

– Unit-V –

5.1 Linear transformation and its representation as a matrix

5.2 Algebra of linear transformation

5.3 Rank-Nullity theorem

5.4 Change of basis, dual space, bi-dual space and natural isomorphism

5.5 Adjoint of a linear transformation

5.6 Eigenvalues and Eigenvectors of a linear transformation

5.7 Diagonalization

Betyg och recensioner

5,0
1 recension

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.