ALGEBRA, VECTOR ANALYSIS & GEOMETRY

Ram Prasad Publications(R.P.H.)
5,0
3 avaliações
E-book
504
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

Unit-I

1.1 Historical background :

1.1.1 Development of Indian Mathematics

Later Classical Period (500-1250)

1.1.2 A brief biography of Varahamihira and Aryabhatta

1.2 Rank of Matrix

1.3 Echelon and normal form of matrix

1.4 Characteristic equations of a matrix

1.4.1 Eigen-values

1.4.2 Eigen-vectors

Unit-II

2.1 Cayley Hamilton theorem

2.2 Application of Cayley Hamilton theorem to find the inverse of a matrix

2.3 Application of matrix to solve a system of linear equations

2.4 Theorems on consistency and inconsistency of a system of linear equations

2.5 Solving linear equations up to three unknowns

Unit-III

3.1 Scalar and Vector products of three and four vectors

3.2 Reciprocal vectors

3.3 Vector differentiation

3.3.1 Rules of differentiation

3.3.2 Derivatives of Triple Products

3.4 Gradient, Divergence and Curl

3.5 Directional derivatives

3.6 Vector Identities

3.7 Vector Equations

Unit-IV

4.1 Vector Integration

4.2 Gauss theorem (without proof) and problems based on it

4.3 Green theorem (without proof) and problems based on it

4.4 Stoke theorem (without prof) and problems based on it

Unit-V

5.1 General equation of second degree

5.2 Tracing of conics

5.3 System of conics

5.4 Cone

5.4.1 Equation of cone with given base

5.4.2 Generators of cone

5.4.3 Condition for three mutually perpendicular gerators

5.4.5 Right circular cone

5.5 Cylinder

5.5.1 Equation of cylinder and its properties

5.5.2 Right Circular Cylinder

5.5.3 Enveloping Cylinder

Classificações e resenhas

5,0
3 avaliações

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.