A Programming Approach to Computability

· Springer Science & Business Media
5,0
1 review
E-boek
251
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Computability theory is at the heart of theoretical computer science. Yet, ironically, many of its basic results were discovered by mathematical logicians prior to the development of the first stored-program computer. As a result, many texts on computability theory strike today's computer science students as far removed from their concerns. To remedy this, we base our approach to computability on the language of while-programs, a lean subset of PASCAL, and postpone consideration of such classic models as Turing machines, string-rewriting systems, and p. -recursive functions till the final chapter. Moreover, we balance the presentation of un solvability results such as the unsolvability of the Halting Problem with a presentation of the positive results of modern programming methodology, including the use of proof rules, and the denotational semantics of programs. Computer science seeks to provide a scientific basis for the study of information processing, the solution of problems by algorithms, and the design and programming of computers. The last 40 years have seen increasing sophistication in the science, in the microelectronics which has made machines of staggering complexity economically feasible, in the advances in programming methodology which allow immense programs to be designed with increasing speed and reduced error, and in the develop ment of mathematical techniques to allow the rigorous specification of program, process, and machine.

Beoordelingen en reviews

5,0
1 review

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.