Absolute Analysis

·
· Grundlehren der mathematischen Wissenschaften Bog 102 · Springer Science & Business Media
E-bog
272
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

The first edition of this book, published in German, came into being as the result of lectures which the authors held over a period of several years since 1953 at the Universities of Helsinki and Zurich. The Introduction, which follows, provides information on what moti vated our presentation of an absolute, coordinate- and dimension-free infinitesimal calculus. Little previous knowledge is presumed of the reader. It can be recom mended to students familiar with the usual structure, based on co ordinates, of the elements of analytic geometry, differential and integral calculus and of the theory of differential equations. We are indebted to H. Keller, T. Klemola, T. Nieminen, Ph. Tondeur and K. 1. Virtanen, who read our presentation in our first manuscript, for important critical remarks. The present new English edition deviates at several points from the first edition (d. Introduction). Professor I. S. Louhivaara has from the beginning to the end taken part in the production of the new edition and has advanced our work by suggestions on both content and form. For his important support we wish to express our hearty thanks. We are indebted also to W. Greub and to H. Haahti for various valuable remarks. Our manuscript for this new edition has been translated into English by Doctor P. Emig. We express to him our gratitude for his careful interest and skillful attention during this work.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.