Abstract analytic number theory

¡ North-Holland Mathematical Library āĻŦāĻ‡ 12 ¡ Newnes
āĻ‡-āĻŦā§āĻ•
321
āĻĒā§ƒāĻˇā§āĻ āĻž
āĻ‰āĻĒāĻ¯ā§āĻ•ā§āĻ¤
āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻ“ āĻ°āĻŋāĻ­āĻŋāĻ‰ āĻ¯āĻžāĻšāĻžāĻ‡ āĻ•āĻ°āĻž āĻšā§ŸāĻ¨āĻŋ  āĻ†āĻ°āĻ“ āĻœāĻžāĻ¨ā§āĻ¨

āĻāĻ‡ āĻ‡-āĻŦā§āĻ•ā§‡āĻ° āĻŦāĻŋāĻˇā§Ÿā§‡

North-Holland Mathematical Library, Volume 12: Abstract Analytic Number Theory focuses on the approaches, methodologies, and principles of the abstract analytic number theory. The publication first deals with arithmetical semigroups, arithmetical functions, and enumeration problems. Discussions focus on special functions and additive arithmetical semigroups, enumeration and zeta functions in special cases, infinite sums and products, double series and products, integral domains and arithmetical semigroups, and categories satisfying theorems of the Krull-Schmidt type. The text then ponders on semigroups satisfying Axiom A, asymptotic enumeration and "statistical" properties of arithmetical functions, and abstract prime number theorem. Topics include asymptotic properties of prime-divisor functions, maximum and minimum orders of magnitude of certain functions, asymptotic enumeration in certain categories, distribution functions of prime-independent functions, and approximate average values of special arithmetical functions. The manuscript takes a look at arithmetical formations, additive arithmetical semigroups, and Fourier analysis of arithmetical functions, including Fourier theory of almost even functions, additive abstract prime number theorem, asymptotic average values and densities, and average values of arithmetical functions over a class. The book is a vital reference for researchers interested in the abstract analytic number theory.

āĻ‡-āĻŦā§āĻ•ā§‡ āĻ°ā§‡āĻŸāĻŋāĻ‚ āĻĻāĻŋāĻ¨

āĻ†āĻĒāĻ¨āĻžāĻ° āĻŽāĻ¤āĻžāĻŽāĻ¤ āĻœāĻžāĻ¨āĻžāĻ¨āĨ¤

āĻĒāĻ āĻ¨ āĻ¤āĻĨā§āĻ¯

āĻ¸ā§āĻŽāĻžāĻ°ā§āĻŸāĻĢā§‹āĻ¨ āĻāĻŦāĻ‚ āĻŸā§āĻ¯āĻžāĻŦāĻ˛ā§‡āĻŸ
Android āĻāĻŦāĻ‚ iPad/iPhone āĻāĻ° āĻœāĻ¨ā§āĻ¯ Google Play āĻŦāĻ‡ āĻ…ā§āĻ¯āĻžāĻĒ āĻ‡āĻ¨āĻ¸ā§āĻŸāĻ˛ āĻ•āĻ°ā§āĻ¨āĨ¤ āĻāĻŸāĻŋ āĻ†āĻĒāĻ¨āĻžāĻ° āĻ…ā§āĻ¯āĻžāĻ•āĻžāĻ‰āĻ¨ā§āĻŸā§‡āĻ° āĻ¸āĻžāĻĨā§‡ āĻ…āĻŸā§‹āĻŽā§‡āĻŸāĻŋāĻ• āĻ¸āĻŋāĻ™ā§āĻ• āĻšā§Ÿ āĻ“ āĻ†āĻĒāĻ¨āĻŋ āĻ…āĻ¨āĻ˛āĻžāĻ‡āĻ¨ āĻŦāĻž āĻ…āĻĢāĻ˛āĻžāĻ‡āĻ¨ āĻ¯āĻžāĻ‡ āĻĨāĻžāĻ•ā§āĻ¨ āĻ¨āĻž āĻ•ā§‡āĻ¨ āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻĒā§œāĻ¤ā§‡ āĻĻā§‡ā§ŸāĨ¤
āĻ˛ā§āĻ¯āĻžāĻĒāĻŸāĻĒ āĻ“ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°
Google Play āĻĨā§‡āĻ•ā§‡ āĻ•ā§‡āĻ¨āĻž āĻ…āĻĄāĻŋāĻ“āĻŦā§āĻ• āĻ†āĻĒāĻ¨āĻŋ āĻ•āĻŽā§āĻĒāĻŋāĻ‰āĻŸāĻžāĻ°ā§‡āĻ° āĻ“ā§Ÿā§‡āĻŦ āĻŦā§āĻ°āĻžāĻ‰āĻœāĻžāĻ°ā§‡ āĻļā§āĻ¨āĻ¤ā§‡ āĻĒāĻžāĻ°ā§‡āĻ¨āĨ¤
eReader āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āĻ¯āĻžāĻ¨ā§āĻ¯ āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸
Kobo eReaders-āĻāĻ° āĻŽāĻ¤ā§‹ e-ink āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻĒāĻĄāĻŧāĻ¤ā§‡, āĻ†āĻĒāĻ¨āĻžāĻ•ā§‡ āĻāĻ•āĻŸāĻŋ āĻĢāĻžāĻ‡āĻ˛ āĻĄāĻžāĻ‰āĻ¨āĻ˛ā§‹āĻĄ āĻ“ āĻ†āĻĒāĻ¨āĻžāĻ° āĻĄāĻŋāĻ­āĻžāĻ‡āĻ¸ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°āĻ¤ā§‡ āĻšāĻŦā§‡āĨ¤ āĻŦā§āĻ¯āĻŦāĻšāĻžāĻ°āĻ•āĻžāĻ°ā§€āĻ° āĻ‰āĻĻā§āĻĻā§‡āĻļā§āĻ¯ā§‡ āĻ¤ā§ˆāĻ°āĻŋ āĻ¸āĻšāĻžā§ŸāĻ¤āĻž āĻ•ā§‡āĻ¨ā§āĻĻā§āĻ°āĻ¤ā§‡ āĻĻā§‡āĻ“ā§ŸāĻž āĻ¨āĻŋāĻ°ā§āĻĻā§‡āĻļāĻžāĻŦāĻ˛ā§€ āĻ…āĻ¨ā§āĻ¸āĻ°āĻŖ āĻ•āĻ°ā§‡ āĻ¯ā§‡āĻ¸āĻŦ eReader-āĻ āĻĢāĻžāĻ‡āĻ˛ āĻĒāĻĄāĻŧāĻž āĻ¯āĻžāĻŦā§‡ āĻ¸ā§‡āĻ–āĻžāĻ¨ā§‡ āĻŸā§āĻ°āĻžāĻ¨ā§āĻ¸āĻĢāĻžāĻ° āĻ•āĻ°ā§āĻ¨āĨ¤