Additively Manufactured Inconel 718: Microstructures and Mechanical Properties

· Linköping Studies in Science and Technology. Licentiate Thesis 第 1 本图书 · Linköping University Electronic Press
3.0
2条评价
电子书
69
评分和评价未经验证  了解详情

关于此电子书

Additive manufacturing (AM), also known as 3D printing, has gained significant interest in aerospace, energy, automotive and medical industries due to its capabilities of manufacturing components that are either prohibitively costly or impossible to manufacture by conventional processes. Among the various additive manufacturing processes for metallic components, electron beam melting (EBM) and selective laser melting (SLM) are two of the most widely used powder bed based processes, and have shown great potential for manufacturing high-end critical components, such as turbine blades and customized medical implants. The futures of the EBM and SLM are doubtlessly promising, but to fully realize their potentials there are still many challenges to overcome.

Inconel 718 (IN718) is a nickel-base superalloy and has impressive combination of good mechanical properties and low cost. Though IN718 is being mostly used as a turbine disk material now, the initial introduction of IN718 was to overcome the poor weldability of superalloys in 1960s, since sluggish precipitation of strengthening phases ?’/?’’ enables good resistance to strain-age cracking during welding or post weld heat treatment. Given the similarity between AM and welding processes, IN718 has been widely applied to the metallic AM field to facilitate the understandings of process-microstructure-property relationships.

The work presented in this licentiate thesis aims to better understand microstructures and mechanical properties EBM and SLM IN718, which have not been systematically investigated. Microstructures of EBM and SLM IN718 have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and correlated with the process conditions. Monotonic mechanical properties (e.g., Vickers microhardness and tensile properties) have also been measured and rationalized with regards to the microstructure evolutions before and after heat treatments.

For EBM IN718, the results show the microstructure is not homogeneous but dependant on the location in the components, and the anisotropic mechanical properties are probably attributed to alignment of porosities rather than texture. Post heat treatment can slightly increase the mechanical strength compared to the as-manufactured condition but does not alter the anisotropy. SLM IN718 shows significantly different microstructure and mechanical properties to EBM IN718. The as-manufactured SLM IN718 has very fine dendritic microstructure and Laves phases in the interdendrites, and is “work-hardened” by the residual strains and dislocations present in the material. Mechanical properties are different between horizontally and vertically built samples, and heat treatment can minimize this difference. Results from this licentiate thesis provide the basis for the further research on the cyclic mechanical properties of EBM and SLM IN718, which would be the focus of following phase of the Ph.D. research.

评分和评价

3.0
2条评价

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。