Advances in Decision Analysis

·
· Mathematical Modelling: Theory and Applications Cartea 4 · Springer Science & Business Media
Carte electronică
204
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The present book fmds its roots in the International Conference on Methods and Applications of Multiple Criteria Decision Making held in Mons in May 1997. A small number of contributions to that conference were selected via a refereeing procedure and retained authors were requested to include in their final version their more recent results. This explains why some papers differ significantly from the original presentation. The introductory paper of Raynaud addresses the long range forecasts in Multiple Criteria Decision Making on the basis of a Delphi process that was run before and during the congress. In a second part, the French author explains how he and some of his partners could find the proof of an important conjecture : the iteration of a strongly monotonic choice function is not a strongly monotonic ranking function. The second part of the book covers methodological aspects of decision theory. The contribution of Bouyssou and Pirlot concerns the reformulation of classical conjoint measurement models that induce a complete and transitive preference binary relation on the set of alternatives which seem to be unrealistic when decision makers are asked to compare objects evaluated on several attributes. The authors propose to consider non transitive, non complete and non additive decomposable conjoint models. They define properties that characterize such models.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.