The book provides a complete theory of observability and, consequently, the analytical solution of some open problems in control theory. Notably, it presents the first general analytic solution of the nonlinear unknown input observability (nonlinear UIO), a very complex open problem studied in the 1960s. Based on this solution, the book provides examples with important applications for neuroscience, including a deep study of the integration of multiple sensory cues from the visual and vestibular systems for self-motion perception.
Observability: A New Theory Based on the Group of Invariance is the only book focused solely on observability. It provides readers with many applications, mostly in robotics and autonomous navigation, as well as complex examples in the framework of vision-aided inertial navigation for aerial vehicles. For these applications, it also includes all the derivations needed to separate the observable part of the system from the unobservable, an analysis with practical importance for obtaining the basic equations for implementing any estimation scheme or for achieving a closed-form solution to the problem.
This book is intended for researchers in robotics and automation, both in academia and in industry. Researchers in other engineering disciplines, such as information theory and mechanics, will also find the book useful.