Algebraic Geometry and Singularities

·
· Progress in Mathematics 134 巻 · Birkhäuser
電子書籍
407
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

The volume contains both general and research papers. Among the first ones are papers showing recent and original developments or methods in subjects such as resolution of singularities, D-module theory, singularities of maps and geometry of curves. The research papers deal on topics related to, or close to, those listed_above. The contributions are organized in three parts according to their contents. Part I presents a set of papers on resolution of singularities, a topic of renewed activity. It deals with important topics of current interest, such as canonical, algorithmic, combinatorial and graphical procedures (Villamayor, Oka, Marijmin), as well as special results on desingularization in characteristic p (Cossart, Moh), and connections between resolution and structure of the space of arcs through a singularity (Gonz81ez-Sprinberg-Lejeune-Jalabert). Part II contains a series of papers on the study~of singularities and its connections with differential systems and deformation or perturbation theo ries. Two expository papers (Maisonobe-Briam;on, :'vlebkhout) describe, in an algebro-geometric way, the interaction between singularities and D-module t.he ory including recent progress on Bernstein polynomials and Newton polygon techniques. Geometry of foliations (Henaut, Garcfa-Reguera), polar varieties and stratifications (Hajto) are also topics treated here. Two other papers (Wall, Greuel-Pfister) deal with quasihomogeneous singularities in the contexts of per turbations and moduli spaces. Globalization of deformations of singularities (de Jong) and determination of complex topology from the real one (~10nd) com plete this series of papers. Part III consists of papers on algebraic geometry of curves and surfaces.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。