Algebraic Geometry and Singularities

·
· Progress in Mathematics Livro 134 · Birkhäuser
E-book
407
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

The volume contains both general and research papers. Among the first ones are papers showing recent and original developments or methods in subjects such as resolution of singularities, D-module theory, singularities of maps and geometry of curves. The research papers deal on topics related to, or close to, those listed_above. The contributions are organized in three parts according to their contents. Part I presents a set of papers on resolution of singularities, a topic of renewed activity. It deals with important topics of current interest, such as canonical, algorithmic, combinatorial and graphical procedures (Villamayor, Oka, Marijmin), as well as special results on desingularization in characteristic p (Cossart, Moh), and connections between resolution and structure of the space of arcs through a singularity (Gonz81ez-Sprinberg-Lejeune-Jalabert). Part II contains a series of papers on the study~of singularities and its connections with differential systems and deformation or perturbation theo ries. Two expository papers (Maisonobe-Briam;on, :'vlebkhout) describe, in an algebro-geometric way, the interaction between singularities and D-module t.he ory including recent progress on Bernstein polynomials and Newton polygon techniques. Geometry of foliations (Henaut, Garcfa-Reguera), polar varieties and stratifications (Hajto) are also topics treated here. Two other papers (Wall, Greuel-Pfister) deal with quasihomogeneous singularities in the contexts of per turbations and moduli spaces. Globalization of deformations of singularities (de Jong) and determination of complex topology from the real one (~10nd) com plete this series of papers. Part III consists of papers on algebraic geometry of curves and surfaces.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.