Algebraic Geometry and Singularities

·
· Progress in Mathematics Cartea 134 · Birkhäuser
Carte electronică
407
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The volume contains both general and research papers. Among the first ones are papers showing recent and original developments or methods in subjects such as resolution of singularities, D-module theory, singularities of maps and geometry of curves. The research papers deal on topics related to, or close to, those listed_above. The contributions are organized in three parts according to their contents. Part I presents a set of papers on resolution of singularities, a topic of renewed activity. It deals with important topics of current interest, such as canonical, algorithmic, combinatorial and graphical procedures (Villamayor, Oka, Marijmin), as well as special results on desingularization in characteristic p (Cossart, Moh), and connections between resolution and structure of the space of arcs through a singularity (Gonz81ez-Sprinberg-Lejeune-Jalabert). Part II contains a series of papers on the study~of singularities and its connections with differential systems and deformation or perturbation theo ries. Two expository papers (Maisonobe-Briam;on, :'vlebkhout) describe, in an algebro-geometric way, the interaction between singularities and D-module t.he ory including recent progress on Bernstein polynomials and Newton polygon techniques. Geometry of foliations (Henaut, Garcfa-Reguera), polar varieties and stratifications (Hajto) are also topics treated here. Two other papers (Wall, Greuel-Pfister) deal with quasihomogeneous singularities in the contexts of per turbations and moduli spaces. Globalization of deformations of singularities (de Jong) and determination of complex topology from the real one (~10nd) com plete this series of papers. Part III consists of papers on algebraic geometry of curves and surfaces.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.