reportValutazioni e recensioni non sono verificate Scopri di più
Informazioni su questo ebook
An essential undergraduate textbook on algebra, topology, and calculus
An Introduction to Analysis is an essential primer on basic results in algebra, topology, and calculus for undergraduate students considering advanced degrees in mathematics. Ideal for use in a one-year course, this unique textbook also introduces students to rigorous proofs and formal mathematical writing--skills they need to excel.
With a range of problems throughout, An Introduction to Analysis treats n-dimensional calculus from the beginning—differentiation, the Riemann integral, series, and differential forms and Stokes's theorem—enabling students who are serious about mathematics to progress quickly to more challenging topics. The book discusses basic material on point set topology, such as normed and metric spaces, topological spaces, compact sets, and the Baire category theorem. It covers linear algebra as well, including vector spaces, linear mappings, Jordan normal form, bilinear mappings, and normal mappings.
Proven in the classroom, An Introduction to Analysis is the first textbook to bring these topics together in one easy-to-use and comprehensive volume.
Provides a rigorous introduction to calculus in one and several variables
Introduces students to basic topology
Covers topics in linear algebra, including matrices, determinants, Jordan normal form, and bilinear and normal mappings
Discusses differential forms and Stokes's theorem in n dimensions
Also covers the Riemann integral, integrability, improper integrals, and series expansions
Informazioni sull'autore
Robert C. Gunning is professor of mathematics at Princeton University. His books include Lectures on Riemann Surfaces and Lectures on ComplexAnalytic Varieties (both Princeton).
Valuta questo ebook
Dicci cosa ne pensi.
Informazioni sulla lettura
Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.