An Introduction to Hypergeometric, Supertrigonometric, and Superhyperbolic Functions

· Academic Press
eBook
502
Páginas
Apto
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

An Introduction to Hypergeometric, Supertigonometric, and Superhyperbolic Functions gives a basic introduction to the newly established hypergeometric, supertrigonometric, and superhyperbolic functions from the special functions viewpoint. The special functions, such as the Euler Gamma function, the Euler Beta function, the Clausen hypergeometric series, and the Gauss hypergeometric have been successfully applied to describe the real-world phenomena that involve complex behaviors arising in mathematics, physics, chemistry, and engineering. - Provides a historical overview for a family of the special polynomials - Presents a logical investigation of a family of the hypergeometric series - Proposes a new family of the hypergeometric supertrigonometric functions - Presents a new family of the hypergeometric superhyperbolic functions

Acerca del autor

Dr. Xiao-Jun Yang is a full professor of China University of Mining and Technology, China. He was awarded the 2019 Obada-Prize, the Young Scientist Prize (Turkey), and Springer's Distinguished Researcher Award. His scientific interests include: Viscoelasticity, Mathematical Physics, Fractional Calculus and Applications, Fractals, Analytic Number Theory, and Special Functions. He has published over 160 journal articles and 4 monographs, 1 edited volume, and 10 chapters. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Methods in the Applied Sciences, Mathematical Modelling and Analysis, Journal of Thermal Stresses, and Thermal Science, and an associate editor of Journal of Thermal Analysis and Calorimetry, Alexandria Engineering Journal, and IEEE Access.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.