An Introduction to Hypergeometric, Supertrigonometric, and Superhyperbolic Functions

· Academic Press
Carte electronică
502
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

An Introduction to Hypergeometric, Supertigonometric, and Superhyperbolic Functions gives a basic introduction to the newly established hypergeometric, supertrigonometric, and superhyperbolic functions from the special functions viewpoint. The special functions, such as the Euler Gamma function, the Euler Beta function, the Clausen hypergeometric series, and the Gauss hypergeometric have been successfully applied to describe the real-world phenomena that involve complex behaviors arising in mathematics, physics, chemistry, and engineering. - Provides a historical overview for a family of the special polynomials - Presents a logical investigation of a family of the hypergeometric series - Proposes a new family of the hypergeometric supertrigonometric functions - Presents a new family of the hypergeometric superhyperbolic functions

Despre autor

Dr. Xiao-Jun Yang is a full professor of China University of Mining and Technology, China. He was awarded the 2019 Obada-Prize, the Young Scientist Prize (Turkey), and Springer's Distinguished Researcher Award. His scientific interests include: Viscoelasticity, Mathematical Physics, Fractional Calculus and Applications, Fractals, Analytic Number Theory, and Special Functions. He has published over 160 journal articles and 4 monographs, 1 edited volume, and 10 chapters. He is currently an editor of several scientific journals, such as Fractals, Applied Numerical Mathematics, Mathematical Methods in the Applied Sciences, Mathematical Modelling and Analysis, Journal of Thermal Stresses, and Thermal Science, and an associate editor of Journal of Thermal Analysis and Calorimetry, Alexandria Engineering Journal, and IEEE Access.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.