An Introduction to Stochastic Differential Equations

· American Mathematical Soc.
4,0
1 anmeldelse
E-bog
151
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

This short book provides a quick, but very readable introduction to
stochastic differential equations, that is, to differential equations
subject to additive "white noise" and related random disturbances. The
exposition is concise and strongly focused upon the interplay between
probabilistic intuition and mathematical rigor. Topics include a quick
survey of measure theoretic probability theory, followed by an
introduction to Brownian motion and the Itô stochastic calculus, and
finally the theory of stochastic differential equations. The text also
includes applications to partial differential equations, optimal
stopping problems and options pricing.

This book can be used as a
text for senior undergraduates or beginning graduate students in
mathematics, applied mathematics, physics, financial mathematics, etc.,
who want to learn the basics of stochastic differential equations. The
reader is assumed to be fairly familiar with measure theoretic
mathematical analysis, but is not assumed to have any particular
knowledge of probability theory (which is rapidly developed in Chapter 2
of the book).

Bedømmelser og anmeldelser

4,0
1 anmeldelse

Om forfatteren

Lawrence C. Evans, University of California, Berkeley, CA, USA

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.