All methods are illustrated with analyses of real data examples, many from recent subject area journal articles. These analyses are highlighted in the text, and are more detailed than is typical, providing discussion of the context and background of the problem, model checking, and scientific implications. More than 200 exercises are provided, many also based on recent subject area literature. Data sets and computer code are available at a web site devoted to the text. Adopters of this book may request a solutions manual from: [email protected].
Jeffrey S. Simonoff is Professor of Statistics at New York University. He is author of Smoothing Methods in Statistics and coauthor of A Casebook for a First Course in Statistics and Data Analysis, as well as numerous articles in scholarly journals. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics, and an Elected Member of the International Statistical Institute.