Surface vibrational spectroscopy techniques probe the structure and composition of interfaces at the molecular level. Their versatility, coupled with their non-destructive nature, enables in-situ measurements of operating devices and the monitoring of interface-controlled processes under reactive conditions.
Vibrational Spectroscopy at Electrified Interfaces explores new and emerging applications of Raman, infrared, and non-linear optical spectroscopy for the study of charged interfaces. The book draws from hundreds of findings reported in the literature over the past decade. It features an internationally respected team of authors and editors, all experts in the field of vibrational spectroscopy at surfaces and interfaces. Content is divided into three parts:
The Wiley Series on Electrocatalysis and Electrochemistry is dedicated to reviewing important advances in the field, exploring how these advances affect industry. The series defines what we currently know and can do with our knowledge of electrocatalysis and electrochemistry as well as forecasts where we can expect the field to be in the future.
ANDRZEJ WIECKOWSKI, PhD, is Emeritus Professor of Chemistry at the University of Illinois and the North American Editor for Electrochimica Acta. His research focused on electrode surface structure in relation to electrocatalysis, molecular-level studies of surface oxidation and reduction processes, and surface motional behavior in electrocatalysis.
CAROL KORZENIEWSKI, PhD, is Professor of Chemistry at Texas Tech University. Her research, supported by the U. S. National Science Foundation, Department of Energy, and Department of Defense, centers on the use of vibrational spectroscopy to probe interfacial processes in electrochemistry.
BJÖRN BRAUNSCHWEIG, PhD, is a Postdoctoral Research Associate at the University of Erlangen-Nuremberg and was a recipient of the Feodor Lynen Research Fellowship of the Alexander von Humboldt Foundation. His junior research group focuses on the nonlinear optical spectroscopy of charged interfaces.