Categorification and Higher Representation Theory

·
· American Mathematical Soc.
1.0
1 review
Ebook
361
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The emergent mathematical philosophy of categorification is reshaping our view of modern mathematics by uncovering a hidden layer of structure in mathematics, revealing richer and more robust structures capable of describing more complex phenomena. Categorified representation theory, or higher representation theory, aims to understand a new level of structure present in representation theory. Rather than studying actions of algebras on vector spaces where algebra elements act by linear endomorphisms of the vector space, higher representation theory describes the structure present when algebras act on categories, with algebra elements acting by functors. The new level of structure in higher representation theory arises by studying the natural transformations between functors. This enhanced perspective brings into play a powerful new set of tools that deepens our understanding of traditional representation theory.

This volume exhibits some of the current trends in higher representation theory and the diverse techniques that are being employed in this field with the aim of showcasing the many applications of higher representation theory.

The companion volume (Contemporary Mathematics, Volume 684) is devoted to categorification in geometry, topology, and physics.

Ratings and reviews

1.0
1 review

About the author

Edited by Anna Beliakova: Universität Zürich, Zürich, Switzerland,
Aaron D. Lauda: University of Southern California, Los Angeles, CA

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.