reportRatings and reviews aren’t verified Learn More
About this ebook
The Leading Practical Guide to Stress Analysis—Updated with State-of-the-Art Methods, Applications, and Problems
This widely acclaimed exploration of real-world stress analysis reflects advanced methods and applications used in today’s mechanical, civil, marine, aeronautical engineering, and engineering mechanics/science environments. Practical and systematic, Advanced Mechanics of Materials and Applied Elasticity, Sixth Edition, has been updated with many new examples, figures, problems, MATLAB solutions, tables, and charts.
The revised edition balances discussions of advanced solid mechanics, elasticity theory, classical analysis, and computer-oriented approaches that facilitate solutions when problems resist conventional analysis. It illustrates applications with case studies, worked examples, and problems drawn from modern applications, preparing readers for both advanced study and practice.
Readers will find updated coverage of analysis and design principles, fatigue criteria, fracture mechanics, compound cylinders, rotating disks, 3-D Mohr’s circles, energy and variational methods, buckling of various columns, common shell types, inelastic materials behavior, and more. The text addresses the use of new materials in bridges, buildings, automobiles, submarines, ships, aircraft, and spacecraft. It offers significantly expanded coverage of stress concentration factors and contact stress developments. This book aims to help the reader
Review fundamentals of statics, solids mechanics, stress, and modes of load transmission
Master analysis and design principles through hands-on practice to illustrate their connections
Understand plane stress, stress transformations, deformations, and strains
Analyze a body’s load-carrying capacity based on strength, stiffness, and stability
Learn and apply the theory of elasticity
Explore failure criteria and material behavior under diverse conditions, and predict component deformation or buckling
Solve problems related to beam bending, torsion of noncircular bars, and axisymmetrically loaded components, plates, or shells
Use the numerical finite element method to economically solve complex problems
Characterize the plastic behavior of materials
Register your product for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
About the author
Ansel C. Ugural, Ph.D., served for two decades as professor and chairman of the mechanical engineering department at Fairleigh Dickinson University. He has also been a visiting and research professor of solid mechanics in mechanical engineering at New Jersey Institute of Technology. He is also a National Science Foundation (NSF) Fellow and is a faculty member at the University of Wisconsin–Madison, where he earned his M.S. in mechanical engineering and Ph.D. in engineering mechanics.
Saul K. Fenster, Ph.D., is professor at New Jersey Institute of Technology, where he served as a president for more than two decades. In addition to experience in industry, he has held varied positions at Fairleigh Dickinson University and taught at the City University of New York. Fenster, a Fellow of the American Society of Mechanical Engineers and the American Society for Engineering Education, is co-author of a text on mechanics.
Rate this ebook
Tell us what you think.
Reading information
Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.