Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model.
The book covers the following four general topics:
* Representation and modeling of dynamical systems of the types described above
* Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces
* Specialization of this stability theory to finite-dimensional dynamical systems
* Specialization of this stability theory to infinite-dimensional dynamical systems
Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.