Antiplane Elastic Systems

· Ergebnisse der angewandten Mathematik Cartea 8 · Springer Science & Business Media
Carte electronică
266
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

The term antiplane was introduced by L. N. G. FlLON to describe such problems as tension, push, bending by couples, torsion, and flexure by a transverse load. Looked at physically these problems differ from those of plane elasticity already treated * in that certain shearing stresses no longer vanish. This book is concerned with antiplane elastic systems in equilibrium or in steady motion within the framework of the linear theory, and is based upon lectures given at the Royal Naval College, Greenwich, to officers of the Royal Corps of Naval Constructors, and on technical reports recently published at the Mathematics Research Center, United States Army. My aim has been to tackle each problem, as far as possible, by direct rather than inverse or guessing methods. Here the complex variable again assumes an important role by simplifying equations and by introducing order into much of the treatment of anisotropic material. The work begins with an introduction to tensors by an intrinsic method which starts from a new and simple definition. This enables elastic properties to be stated with conciseness and physical clarity. This course in no way commits the reader to the exclusive use of tensor calculus, for the structure so built up merges into a more familiar form. Nevertheless it is believed that the tensor methods outlined here will prove useful also in other branches of applied mathematics.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.