Applied Mathematical Sciences: Analysis and Simulation of Chaotic Systems

· Applied Mathematical Sciences Numero 94 · Springer Science & Business Media
Ebook
318
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Beginning with realistic mathematical or verbal models of physical or biological phenomena, the author derives tractable mathematical models that are amenable to further mathematical analysis or to elucidating computer simulations. For the most part, derivations are based on perturbation methods. Because of this, the majority of the text is devoted to careful derivations of implicit function theorems, the method of averaging, and quasi-static state approximation methods. The duality between stability and perturbation is developed and used, relying heavily on the concept of stability under persistent disturbances. This explains why stability results developed for quite simple problems are often useful for more complicated, even chaotic, ones. Relevant topics about linear systems, nonlinear oscillations, and stability methods for difference, differential-delay, integro- differential and ordinary and partial differential equations are developed throughout the book. For the second edition, the author has restructured the chapters, placing special emphasis on introductory materials in Chapters 1 and 2 as distinct from presentation materials in Chapters 3 through 8. In addition, more material on bifurcations from the point of view of canonical models, sections on randomly perturbed systems, and several new computer simulations have been added.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.