Applied Mathematical Sciences: Imperfect Bifurcation in Structures and Materials

· Applied Mathematical Sciences Numero 149 · Springer Science & Business Media
Ebook
414
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Many physical systems lose or gain stability and pattern through bifurca tion behavior. Extensive research of this behavior is carried out in many fields of science and engineering. The study of dynamic bifurcation be havior, for example, has made clear the mechanism of dynamic instability and chaos. The group-theoretic bifurcation theory is an established means to deal with the formation and selection of patterns in association with symmetry-breaking bifurcation. Since all physical systems are "imperfect," in that they inevitably involve some initial imperfections, the study of im perfect bifurcation (bifurcation of imperfect systems) has drawn a keen mathematical interest to yield a series of important results, such as the universal unfolding. In structural mechanics, bifurcation behavior has been studied to model the buckling and failure of structural systems. The sharp reduction of the strength of structural systems by initial imperfections is formulated as im perfection sensitivity laws. A series of statistical studies has been conducted to make clear the dependence of the strength of structures on the statis tical variation of initial imperfections. A difficulty in these studies arises from the presence of a large number of initial imperfections. At this state, most of these studies are carried out based on the Monte Carlo simulation for a number of initial imperfections, or, on an imperfection sensitivity law against a single initial imperfection.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.