Applied Mathematical Sciences: Imperfect Bifurcation in Structures and Materials

· Applied Mathematical Sciences 149호 · Springer Science & Business Media
eBook
414
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Many physical systems lose or gain stability and pattern through bifurca tion behavior. Extensive research of this behavior is carried out in many fields of science and engineering. The study of dynamic bifurcation be havior, for example, has made clear the mechanism of dynamic instability and chaos. The group-theoretic bifurcation theory is an established means to deal with the formation and selection of patterns in association with symmetry-breaking bifurcation. Since all physical systems are "imperfect," in that they inevitably involve some initial imperfections, the study of im perfect bifurcation (bifurcation of imperfect systems) has drawn a keen mathematical interest to yield a series of important results, such as the universal unfolding. In structural mechanics, bifurcation behavior has been studied to model the buckling and failure of structural systems. The sharp reduction of the strength of structural systems by initial imperfections is formulated as im perfection sensitivity laws. A series of statistical studies has been conducted to make clear the dependence of the strength of structures on the statis tical variation of initial imperfections. A difficulty in these studies arises from the presence of a large number of initial imperfections. At this state, most of these studies are carried out based on the Monte Carlo simulation for a number of initial imperfections, or, on an imperfection sensitivity law against a single initial imperfection.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.