Applied Mathematical Sciences: Nonlinear Dispersive Equations

·
· Applied Mathematical Sciences Nummer 209 · Springer Nature
E-bok
580
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose–Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems.
This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin–Ono, Davey–Stewartson, and Kadomtsev–Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena.

By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.

Om författaren

Christian Klein is Professor of mathematical physics at the Université de Bourgogne in Dijon, France, and a senior member of the Institut Universitaire de France. He works on nonlinear dispersive PDEs, numerical approaches, integrable systems, applied algebraic geometry and general relativity. His main interest is the numerical study of zones of rapid oscillations in the solutions to nonlinear dispersive equations, so-called dispersive shock waves, and a loss of regularity, a so-called blow-up of the solutions.

Jean-Claude Saut is Emeritus Professor in the Laboratoire de Mathématiques of the Université Paris-Saclay. He works on the analysis of nonlinear dispersive equations and on their rigorous derivation as asymptotic models of general systems. His recent works concern a general class of Boussinesq systems, the analysis of weakly dispersive perturbations of the Burgers equation, and higher order models in the modulation regime of water waves.

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.