Applied Mathematical Sciences: Partial Differential Equations

· Applied Mathematical Sciences Nummer 2 · Springer Science & Business Media
E-bog
250
Sider
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

These Notes grew out of a course given by the author in 1952-53. Though the field of Partial Differential Equations has changed considerably since those days, particularly under the impact of methods taken from Functional Analysis, the author feels that the introductory material offered here still is basic for an understanding of the subject. It supplies the necessary intuitive foundation which motivates and anticipates abstract formulations of the questions and relates them to the description of natual phenomena. Added to this second corrected edition is a collection of problems and solutions, which illustrate and supplement the theories developed in the text. Fritz John New York September, 1974 vii TABLE OF CONTENTS Introd uction 1 CHAPrER I - THE SINGLE FIRST ORDER EQUATION 1. The linear and quasi-linear equations. 6 2. The general first order equation for a function of two variables. • • • • • • • • • 15 The general first order equation for a function 3. of n independent variables. • • • • • 37 CHAPrER II - THE CAUCHY PROBLEM FOR HIGHER ORDER EQUATIONS 1. Analytic functions of several real variables • 48 2. Formulation of the Cauchy problem. The notion of characteristics. • • • 54 3. The Cauchy problem for the general non-linear equation ••• 71 4. The Cauchy-Kowalewsky theorem. 76 CHAPTER III - SECOND ORDER EQUATIONS WITH CONSTANT COEFFICIENTS 1. Equations in two independent variables.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.