Applied Mathematical Sciences: Partial Differential Equations

· Applied Mathematical Sciences Utgave nr. 2 · Springer Science & Business Media
E-bok
250
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

These Notes grew out of a course given by the author in 1952-53. Though the field of Partial Differential Equations has changed considerably since those days, particularly under the impact of methods taken from Functional Analysis, the author feels that the introductory material offered here still is basic for an understanding of the subject. It supplies the necessary intuitive foundation which motivates and anticipates abstract formulations of the questions and relates them to the description of natual phenomena. Added to this second corrected edition is a collection of problems and solutions, which illustrate and supplement the theories developed in the text. Fritz John New York September, 1974 vii TABLE OF CONTENTS Introd uction 1 CHAPrER I - THE SINGLE FIRST ORDER EQUATION 1. The linear and quasi-linear equations. 6 2. The general first order equation for a function of two variables. • • • • • • • • • 15 The general first order equation for a function 3. of n independent variables. • • • • • 37 CHAPrER II - THE CAUCHY PROBLEM FOR HIGHER ORDER EQUATIONS 1. Analytic functions of several real variables • 48 2. Formulation of the Cauchy problem. The notion of characteristics. • • • 54 3. The Cauchy problem for the general non-linear equation ••• 71 4. The Cauchy-Kowalewsky theorem. 76 CHAPTER III - SECOND ORDER EQUATIONS WITH CONSTANT COEFFICIENTS 1. Equations in two independent variables.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.