Applied Mathematical Sciences: Partial Differential Equations

· Applied Mathematical Sciences Numărul 1 · Springer Science & Business Media
Carte electronică
221
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

These Notes grew out of a course given by the author in 1952-53. Though the field of Partial Differential Equations has changed considerably since those days, particularly under the impact of methods taken from Functional Analysis, the author feels that the introductory material offered here still is basic for an understanding of the subject. It supplies the necessary intuitive foundation which motivates and anticipates abstract formulations of the questions and relates them to the description of natual phenomena. In the present edition, only minor corrections have been made in the text. An Index and up-to-date listing of books recommended for further study have been added. Fritz John New York November 19, 1970 v TABLE OF CONTENTS Introduetion 1 CHAPl'ER I - TEE SINGLE FIRST ORDER EQUATION 1. The linear and quasi-linear equations. 6 The general first order equation for a funetion 2. of two variables. • • • • • • • • • 15 The general first order equation for a funetion 3. of n independent variables. • • • • • 37 CHAPl'ER II - TEE CAUCIIT PROBLEM FOR HIGEER ORDER EQUATIONS 1. Analytie funetions of several real variables • Formulation of the Cauehy problem. The not ion 2. of eharaeteristies. • • • 54 3. The Cauehy problem for the general non-linear equation. 71 4. The Cauehy-Kowalewsky theorem. 76 CHAPl'ER 111 - SECOND ORDER EQUATIONS WITH CONSTANT COEFFICIENTS 1. Equations in two independent variables.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.