Applied Mathematical Sciences: Partial Differential Equations

· Applied Mathematical Sciences Випуск №1 · Springer Science & Business Media
Електронна книга
221
Сторінки
Google не перевіряє оцінки й відгуки. Докладніше.

Про цю електронну книгу

These Notes grew out of a course given by the author in 1952-53. Though the field of Partial Differential Equations has changed considerably since those days, particularly under the impact of methods taken from Functional Analysis, the author feels that the introductory material offered here still is basic for an understanding of the subject. It supplies the necessary intuitive foundation which motivates and anticipates abstract formulations of the questions and relates them to the description of natual phenomena. In the present edition, only minor corrections have been made in the text. An Index and up-to-date listing of books recommended for further study have been added. Fritz John New York November 19, 1970 v TABLE OF CONTENTS Introduetion 1 CHAPl'ER I - TEE SINGLE FIRST ORDER EQUATION 1. The linear and quasi-linear equations. 6 The general first order equation for a funetion 2. of two variables. • • • • • • • • • 15 The general first order equation for a funetion 3. of n independent variables. • • • • • 37 CHAPl'ER II - TEE CAUCIIT PROBLEM FOR HIGEER ORDER EQUATIONS 1. Analytie funetions of several real variables • Formulation of the Cauehy problem. The not ion 2. of eharaeteristies. • • • 54 3. The Cauehy problem for the general non-linear equation. 71 4. The Cauehy-Kowalewsky theorem. 76 CHAPl'ER 111 - SECOND ORDER EQUATIONS WITH CONSTANT COEFFICIENTS 1. Equations in two independent variables.

Оцініть цю електронну книгу

Повідомте нас про свої враження.

Як читати

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Ви можете слухати аудіокниги, куплені в Google Play, у веб-переглядачі на комп’ютері.
eReader та інші пристрої
Щоб користуватися пристроями для читання електронних книг із технологією E-ink, наприклад Kobo, вам знадобиться завантажити файл і перенести його на відповідний пристрій. Докладні вказівки з перенесення файлів на підтримувані пристрої можна знайти в Довідковому центрі.