Applied Mathematical Sciences: Stochastic Processes

· Applied Mathematical Sciences ნომერი 23 · Springer Science & Business Media
ელწიგნი
288
გვერდი
რეიტინგები და მიმოხილვები დაუდასტურებელია  შეიტყვეთ მეტი

ამ ელწიგნის შესახებ

This book is the result of lectures which I gave dur ing the academic year 1972-73 to third-year students a~ Aarhus University in Denmark. The purpose of the book, as of the lectures, is to survey some of the main themes in the modern theory of stochastic processes. In my previous book Probability: ! survey of the mathe matical theory I gave a short overview of "classical" proba bility mathematics, concentrating especially on sums of inde pendent random variables. I did not discuss specific appli cations of the theory; I did strive for a spirit friendly to application by coming to grips as fast as I could with the major problems and techniques and by avoiding too high levels of abstraction and completeness. At the same time, I tried to make the proofs both rigorous and motivated and to show how certain results have evolved rather than just presenting them in polished final form. The same remarks apply to this book, at least as a statement of intentions, and it can serve as a sequel to the earlier one continuing the story in the same style and spirit. The contents of the present book fall roughly into two parts. The first deals mostly with stationary processes, which provide the mathematics for describing phenomena in a steady state overall but subject to random fluctuations. Chapter 4 is the heart of this part.

შეაფასეთ ეს ელწიგნი

გვითხარით თქვენი აზრი.

ინფორმაცია წაკითხვასთან დაკავშირებით

სმარტფონები და ტაბლეტები
დააინსტალირეთ Google Play Books აპი Android და iPad/iPhone მოწყობილობებისთვის. ის ავტომატურად განახორციელებს სინქრონიზაციას თქვენს ანგარიშთან და საშუალებას მოგცემთ, წაიკითხოთ სასურველი კონტენტი ნებისმიერ ადგილას, როგორც ონლაინ, ისე ხაზგარეშე რეჟიმში.
ლეპტოპები და კომპიუტერები
Google Play-ში შეძენილი აუდიოწიგნების მოსმენა თქვენი კომპიუტერის ვებ-ბრაუზერის გამოყენებით შეგიძლიათ.
ელწამკითხველები და სხვა მოწყობილობები
ელექტრონული მელნის მოწყობილობებზე წასაკითხად, როგორიცაა Kobo eReaders, თქვენ უნდა ჩამოტვირთოთ ფაილი და გადაიტანოთ იგი თქვენს მოწყობილობაში. დახმარების ცენტრის დეტალური ინსტრუქციების მიხედვით გადაიტანეთ ფაილები მხარდაჭერილ ელწამკითხველებზე.