Asymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics: Edition 2

· Mathematics and Its Applications Кніга 559 · Springer Science & Business Media
Электронная кніга
362
Старонкі
Ацэнкі і водгукі не спраўджаны  Даведацца больш

Пра гэту электронную кнігу

Asymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics is the second edition of the same book in Russian, revised and enlarged. It is devoted to asymptotical questions of the theory of entire and plurisubharmonic functions. The new and traditional asymptotical characteristics of entire functions of one and many variables are studied. Applications of these indices in different fields of complex analysis are considered, for example Borel-Laplace transformations and their modifications, Mittag-Leffler function and its natural generalizations, integral methods of summation of power series and Riemann surfaces.

In the second edition, a new appendix is devoted to the consideration of those questions for a class of entire functions of proximate order. A separate chapter is devoted to applications in biophysics, where the algorithms of mathematical analysis of homeostasis system behaviour, dynamics under external influence are investigated, which may be used in different fields of natural science and technique.

This book is of interest to research specialists in theoretical and applied mathematics, postgraduates and students of universities who are interested in complex and real analysis and its applications.

Ацаніце гэту электронную кнігу

Падзяліцеся сваімі меркаваннямі.

Чытанне інфармацыb

Смартфоны і планшэты
Усталюйце праграму "Кнігі Google Play" для Android і iPad/iPhone. Яна аўтаматычна сінхранізуецца з вашым уліковым запісам і дазваляе чытаць у інтэрнэце або па-за сеткай, дзе б вы ні былі.
Ноўтбукі і камп’ютары
У вэб-браўзеры камп’ютара можна слухаць аўдыякнігі, купленыя ў Google Play.
Электронныя кнiгi i iншыя прылады
Каб чытаць на такіх прыладах для электронных кніг, як, напрыклад, Kobo, трэба спампаваць файл і перанесці яго на сваю прыладу. Выканайце падрабязныя інструкцыі, прыведзеныя ў Даведачным цэнтры, каб перанесці файлы на прылады, якія падтрымліваюцца.