Asymptotic Geometric Analysis, Part I

· ·
· Mathematical Surveys and Monographs Livre 202 · American Mathematical Soc.
Ebook
451
Pages
Les notes et les avis ne sont pas vérifiés  En savoir plus

À propos de cet ebook

The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results.

A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality.

The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.

 

Attribuez une note à ce ebook

Faites-nous part de votre avis.

Informations sur la lecture

Téléphones intelligents et tablettes
Installez l'appli Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play en utilisant le navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour pouvoir lire des ouvrages sur des appareils utilisant la technologie e-Ink, comme les liseuses électroniques Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du centre d'aide pour transférer les fichiers sur les liseuses électroniques compatibles.