Asymptotic Wave Theory

· North-Holland Series in Applied Mathematics and Mechanics Kitabu cha 20 · Elsevier
Kitabu pepe
359
Kurasa
Kimetimiza masharti
Ukadiriaji na maoni hayajahakikishwa  Pata Maelezo Zaidi

Kuhusu kitabu pepe hiki

Asymptotic Wave Theory investigates the asymptotic behavior of wave representations and presents some typical results borrowed from hydrodynamics and elasticity theory. It describes techniques such as Fourier-Laplace transforms, operational calculus, special functions, and asymptotic methods. It also discusses applications to the wave equation, the elements of scattering matrix theory, problems related to the wave equation, and diffraction. Organized into eight chapters, this volume begins with an overview of the Fourier-Laplace integral, the Mellin transform, and special functions such as the gamma function and the Bessel functions. It then considers wave propagation, with emphasis on representations of plane, cylindrical or spherical waves. It methodically introduces the reader to the reflexion and refraction of a plane wave at the interface between two homogeneous media, the asymptotic expansion of Hankel's functions in the neighborhood of the point at infinity, and the asymptotic behavior of the Laplace transform. The book also examines the method of steepest descent, the asymptotic representation of Hankel's function of large order, and the scattering matrix theory. The remaining chapters focus on problems of flow in open channels, the propagation of elastic waves within a layered spherical body, and some problems in water wave theory. This book is a valuable resource for mechanics and students of applied mathematics and mechanics.

Kadiria kitabu pepe hiki

Tupe maoni yako.

Kusoma maelezo

Simu mahiri na kompyuta vibao
Sakinisha programu ya Vitabu vya Google Play kwa ajili ya Android na iPad au iPhone. Itasawazishwa kiotomatiki kwenye akaunti yako na kukuruhusu usome vitabu mtandaoni au nje ya mtandao popote ulipo.
Kompyuta za kupakata na kompyuta
Unaweza kusikiliza vitabu vilivyonunuliwa kwenye Google Play wakati unatumia kivinjari cha kompyuta yako.
Visomaji pepe na vifaa vingine
Ili usome kwenye vifaa vya wino pepe kama vile visomaji vya vitabu pepe vya Kobo, utahitaji kupakua faili kisha ulihamishie kwenye kifaa chako. Fuatilia maagizo ya kina ya Kituo cha Usaidizi ili uhamishe faili kwenye visomaji vya vitabu pepe vinavyotumika.