Aufgabensammlung zur Infinitesimalrechnung: Band III: Integralrechnung auf dem Gebiete mehrerer Variablen

· Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften Kniha 56 · Springer-Verlag
E‑kniha
398
Stránky
Hodnocení a recenze nejsou ověřeny  Další informace

Podrobnosti o e‑knize

Mit diesem Band wird nunmehr meine Aufgabensammlung abgeschlossen. Es gilt dafür das im Vorwort zum Band 11 Gesagte. Bei der Herstellung des Manuskripts wurde ich in freundlicher und sach gemäßer Weise von Frau Prof. R. Jeltsch-Fricker und bei den Korrekturen von Herrn cand. math. K. Langer wirksam unterstützt. Ihnen beiden, sowie dem Verlag, der auch diesmal freundliche Geduld und Ausdauer bewies, gilt mein aufrichtiger Dank. A. Ostrowski ABKÜRZUNGEN Fig. Punkt AbI. Ableitung Figur Pkt. Beh. Behauptung, Fkt. Funktion pos. positiv behaupten GI. Gleichung Stet. Stetigkeit, stetig Bew. Beweis, Int. Integral, u. und beweisen integrieren Ungl. Ungleichung bzw. beziehungsweise Konv. Konvergenz, v. von d. der, die, das konvergieren v. Ind. vollständige d. h. das heißt neg. negativ Induktion Div. Divergenz, m. man vgl. vergleiche divergieren OBdA Ohne Beschr- e. ein, eine, eines kung der All- f. für meinheit {laquo} ist das Symbol für Majorisierung. Za. {laquo}Zb. bedeutet, daß für alle in Frage kommenden v: la. l;{sect}b. gilt. AcB bedeutet: A ist eine Untermenge von B; AEB bedeutet: A ist ein Element der Menge B. Entsprechend ist die Bedeutung von :J, 3. A:=B bedeutet: A ist dfiniert als B; A=:B bedeutet: A soll mit B bezeichnet werden. AU B ist die Vereinigungsmenge von A und B. /\ bedeutet: sowohl als auch; v bedeutet: oder. [al bedeutet die ganze Zahl n mit a-l.

Ohodnotit e‑knihu

Sdělte nám, co si myslíte.

Informace o čtení

Telefony a tablety
Nainstalujte si aplikaci Knihy Google Play pro AndroidiPad/iPhone. Aplikace se automaticky synchronizuje s vaším účtem a umožní vám číst v režimu online nebo offline, ať jste kdekoliv.
Notebooky a počítače
Audioknihy zakoupené na Google Play můžete poslouchat pomocí webového prohlížeče v počítači.
Čtečky a další zařízení
Pokud chcete číst knihy ve čtečkách elektronických knih, jako např. Kobo, je třeba soubor stáhnout a přenést do zařízení. Při přenášení souborů do podporovaných čteček elektronických knih postupujte podle podrobných pokynů v centru nápovědy.