Autonomous Airborne Wireless Networks

· · ·
· John Wiley & Sons
eBook
320
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

AUTONOMOUS AIRBORNE WIRELESS NETWORKS

Discover what lies beyond the bleeding-edge of autonomous airborne networks with this authoritative new resource

Autonomous Airborne Wireless Networks delivers an insightful exploration on recent advances in the theory and practice of using airborne wireless networks to provide emergency communications, coverage and capacity expansion, information dissemination, and more. The distinguished engineers and editors have selected resources that cover the fundamentals of airborne networks, including channel models, recent regulation developments, self-organized networking, AI-enabled flying networks, and notable applications in a variety of industries.

The book evaluates advances in the cutting-edge of unmanned aerial vehicle wireless network technology while offering readers new ideas on how airborne wireless networks can support various applications expected of future networks. The rapidly developing field is examined from a fresh perspective, one not just concerned with ideas of control, trajectory optimization, and navigation.

Autonomous Airborne Wireless Networks considers several potential use cases for the technology and demonstrates how it can be integrated with concepts from self-organized network technology and artificial intelligence to deliver results in those cases. Readers will also enjoy:

  • A thorough discussion of distributed drone base station positioning for emergency cellular networks using reinforcement learning (AI-enabled trajectory optimization)
  • An exploration of unmanned aerial vehicle-to-wearables (UAV2W) indoor radio propagation channel measurements and modelling
  • An up-to-date treatment of energy minimization in UAV trajectory design for delay tolerant emergency communication
  • Examinations of cache-enabled UAVs, 3D MIMO for airborne networks, and airborne networks for Internet of Things communications

Perfect for telecom engineers and industry professionals working on identifying practical and efficient concepts tailored to overcome challenges facing unmanned aerial vehicles providing wireless communications, Autonomous Airborne Wireless Networks also has a place on the bookshelves of stakeholders, regulators, and research agencies working on the latest developments in UAV communications.

Acerca del autor

Muhammad Ali Imran, is Dean University of Glasgow, UESTC, Professor of Communication Systems and Head of Communications Sensing and Imaging Group at the James Watt School of Engineering, University of Glasgow, UK.

Oluwakayode Onireti, PhD, is a Lecturer at the James Watt School of Engineering, University of Glasgow, UK. He received his PhD in Electronics Engineering from the University of Surrey in Guildford, UK.

Shuja Ansari, PhD, is currently a Research Associate at University of Glasgow and actively involved as a Use Case implementation lead for Wave-1 Urban Innovation Projects for Scotland 5G Centre. He received his PhD in Engineering from Glasgow Caledonian University, UK.

Qammer H. Abbasi, is Senior Lecturer (Associate Professor) and Deputy Head of Communications Sensing and Imaging Group at the James Watt School of Engineering the University of Glasgow, UK.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.