The authors develop a notion of axis in the Culler-Vogtmann outer space $\mathcal{X}_r$ of a finite rank free group $F_r$, with respect to the action of a nongeometric, fully irreducible outer automorphism $\phi$. Unlike the situation of a loxodromic isometry acting on hyperbolic space, or a pseudo-Anosov mapping class acting on Teichmüller space, $\mathcal{X}_r$ has no natural metric, and $\phi$ seems not to have a single natural axis. Instead these axes for $\phi$, while not unique, fit into an ""axis bundle"" $\mathcal{A}_\phi$ with nice topological properties: $\mathcal{A}_\phi$ is a closed subset of $\mathcal{X}_r$ proper homotopy equivalent to a line, it is invariant under $\phi$, the two ends of $\mathcal{A}_\phi$ limit on the repeller and attractor of the source-sink action of $\phi$ on compactified outer space, and $\mathcal{A}_\phi$ depends naturally on the repeller and attractor.
The authors propose various definitions for $\mathcal{A}_\phi$, each motivated in different ways by train track theory or by properties of axes in Teichmüller space, and they prove their equivalence.
લેખક વિશે
Michael Handel is at CUNY, Herbert H. Lehman College, Bronx, NY
આ ઇ-પુસ્તકને રેટિંગ આપો
તમે શું વિચારો છો અમને જણાવો.
માહિતી વાંચવી
સ્માર્ટફોન અને ટૅબ્લેટ
Android અને iPad/iPhone માટે Google Play Books ઍપ ઇન્સ્ટૉલ કરો. તે તમારા એકાઉન્ટ સાથે ઑટોમૅટિક રીતે સિંક થાય છે અને તમને જ્યાં પણ હો ત્યાં તમને ઑનલાઇન અથવા ઑફલાઇન વાંચવાની મંજૂરી આપે છે.
લૅપટૉપ અને કમ્પ્યુટર
Google Play પર ખરીદેલ ઑડિઓબુકને તમે તમારા કમ્પ્યુટરના વેબ બ્રાઉઝરનો ઉપયોગ કરીને સાંભળી શકો છો.
eReaders અને અન્ય ડિવાઇસ
Kobo ઇ-રીડર જેવા ઇ-ઇંક ડિવાઇસ પર વાંચવા માટે, તમારે ફાઇલને ડાઉનલોડ કરીને તમારા ડિવાઇસ પર ટ્રાન્સફર કરવાની જરૂર પડશે. સપોર્ટેડ ઇ-રીડર પર ફાઇલો ટ્રાન્સ્ફર કરવા માટે સહાયતા કેન્દ્રની વિગતવાર સૂચનાઓ અનુસરો.