Axes in Outer Space

· American Mathematical Soc.
Rafbók
104
Síður
Einkunnir og umsagnir eru ekki staðfestar  Nánar

Um þessa rafbók

The authors develop a notion of axis in the Culler-Vogtmann outer space $\mathcal{X}_r$ of a finite rank free group $F_r$, with respect to the action of a nongeometric, fully irreducible outer automorphism $\phi$. Unlike the situation of a loxodromic isometry acting on hyperbolic space, or a pseudo-Anosov mapping class acting on Teichmüller space, $\mathcal{X}_r$ has no natural metric, and $\phi$ seems not to have a single natural axis. Instead these axes for $\phi$, while not unique, fit into an ""axis bundle"" $\mathcal{A}_\phi$ with nice topological properties: $\mathcal{A}_\phi$ is a closed subset of $\mathcal{X}_r$ proper homotopy equivalent to a line, it is invariant under $\phi$, the two ends of $\mathcal{A}_\phi$ limit on the repeller and attractor of the source-sink action of $\phi$ on compactified outer space, and $\mathcal{A}_\phi$ depends naturally on the repeller and attractor.

The authors propose various definitions for $\mathcal{A}_\phi$, each motivated in different ways by train track theory or by properties of axes in Teichmüller space, and they prove their equivalence.

Um höfundinn

Michael Handel is at CUNY, Herbert H. Lehman College, Bronx, NY

Gefa þessari rafbók einkunn.

Segðu okkur hvað þér finnst.

Upplýsingar um lestur

Snjallsímar og spjaldtölvur
Settu upp forritið Google Play Books fyrir Android og iPad/iPhone. Það samstillist sjálfkrafa við reikninginn þinn og gerir þér kleift að lesa með eða án nettengingar hvar sem þú ert.
Fartölvur og tölvur
Hægt er að hlusta á hljóðbækur sem keyptar eru í Google Play í vafranum í tölvunni.
Lesbretti og önnur tæki
Til að lesa af lesbrettum eins og Kobo-lesbrettum þarftu að hlaða niður skrá og flytja hana yfir í tækið þitt. Fylgdu nákvæmum leiðbeiningum hjálparmiðstöðvar til að flytja skrár yfir í studd lesbretti.