Bayesian Demographic Estimation and Forecasting

·
· CRC Press
I-Ebook
292
Amakhasi
Kufanelekile
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

Bayesian Demographic Estimation and Forecasting presents three statistical frameworks for modern demographic estimation and forecasting. The frameworks draw on recent advances in statistical methodology to provide new tools for tackling challenges such as disaggregation, measurement error, missing data, and combining multiple data sources. The methods apply to single demographic series, or to entire demographic systems. The methods unify estimation and forecasting, and yield detailed measures of uncertainty.

The book assumes minimal knowledge of statistics, and no previous knowledge of demography. The authors have developed a set of R packages implementing the methods. Data and code for all applications in the book are available on www.bdef-book.com.

"This book will be welcome for the scientific community of forecasters...as it presents a new approach which has already given important results and which, in my opinion, will increase its importance in the future." ~Daniel Courgeau, Institut national d'études démographiques

Mayelana nomlobi

John Bryant is a senior researcher at Statistics New Zealand. He has previously worked at the New Zealand Treasury, and at universities in New Zealand and Thailand. He has consulted for many international organizations, including UNICEF, the FAO, and the World Bank. His research interests include applied demography, data science, and Bayesian statistics.

Junni L. Zhang is an associate professor of statistics at Guanghua School of Management, Peking University. Her research interests include Bayesian statistics, text mining, and causal inference. She has extensive experience teaching undergraduate, graduate, MBA and executive courses, and is the author of Data Mining and Its Applications (in Chinese).

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.