Bayesian Model Comparison

·
· Emerald Group Publishing
電子書
390
頁數
符合資格
評分和評論未經驗證 瞭解詳情

關於這本電子書

The volume contains articles that should appeal to readers with computational, modeling, theoretical, and applied interests. Methodological issues include parallel computation, Hamiltonian Monte Carlo, dynamic model selection, small sample comparison of structural models, Bayesian thresholding methods in hierarchical graphical models, adaptive reversible jump MCMC, LASSO estimators, parameter expansion algorithms, the implementation of parameter and non-parameter-based approaches to variable selection, a survey of key results in objective Bayesian model selection methodology, and a careful look at the modeling of endogeneity in discrete data settings. Important contemporary questions are examined in applications in macroeconomics, finance, banking, labor economics, industrial organization, and transportation, among others, in which model uncertainty is a central consideration.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。