Beyond Hyperbolicity

· ·
· London Mathematical Society Lecture Note Series Część 454 · Cambridge University Press
E-book
242
Strony
Oceny i opinie nie są weryfikowane. Więcej informacji

Informacje o e-booku

Since the notion was introduced by Gromov in the 1980s, hyperbolicity of groups and spaces has played a significant role in geometric group theory; hyperbolic groups have good geometric properties that allow us to prove strong results. However, many classes of interest in our exploration of the universe of finitely generated groups contain examples that are not hyperbolic. Thus we wish to go 'beyond hyperbolicity' to find good generalisations that nevertheless permit similarly strong results. This book is the ideal resource for researchers wishing to contribute to this rich and active field. The first two parts are devoted to mini-courses and expository articles on coarse median spaces, semihyperbolicity, acylindrical hyperbolicity, Morse boundaries, and hierarchical hyperbolicity. These serve as an introduction for students and a reference for experts. The topics of the surveys (and more) re-appear in the research articles that make up Part III, presenting the latest results beyond hyperbolicity.

O autorze

Mark Hagen is a Lecturer in Mathematics at the University of Bristol. His interests lie in geometric group theory, including in particular cubical/median geometry, mapping class groups, and their coarse-geometric generalisations.

Richard Webb is an EPSRC Postdoctoral Fellow at the University of Cambridge and a Stokes Research Fellow at Pembroke College. He investigates the algebra and geometry of the mapping class group and its relatives, often using techniques and inspiration drawn from geometric group theory.

Henry Wilton is a Reader in Pure Mathematics at the University of Cambridge and a Fellow of Trinity College. He works in the fields of geometric group theory and low-dimensional topology. His interests include the subgroup structure of hyperbolic groups, questions of profinite rigidity, decision problems, and properties of 3-manifold groups.

Oceń tego e-booka

Podziel się z nami swoją opinią.

Informacje o czytaniu

Smartfony i tablety
Zainstaluj aplikację Książki Google Play na AndroidaiPada/iPhone'a. Synchronizuje się ona automatycznie z kontem i pozwala na czytanie w dowolnym miejscu, w trybie online i offline.
Laptopy i komputery
Audiobooków kupionych w Google Play możesz słuchać w przeglądarce internetowej na komputerze.
Czytniki e-booków i inne urządzenia
Aby czytać na e-papierze, na czytnikach takich jak Kobo, musisz pobrać plik i przesłać go na swoje urządzenie. Aby przesłać pliki na obsługiwany czytnik, postępuj zgodnie ze szczegółowymi instrukcjami z Centrum pomocy.