Birational Geometry and Moduli Spaces

· · · ·
· Springer INdAM Series Libro 39 · Springer Nature
eBook
200
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic symplectic manifolds, Severi varieties, degenerations of Calabi-Yau varieties, uniruled threefolds, toric Fano threefolds, mirror symmetry, canonical bundle formula, the Lefschetz principle, birational transformations, and deformations of diagrams of algebras. The intention is to disseminate the knowledge of advanced results and key techniques used to solve open problems. The book is intended for all advanced graduate students and researchers interested in the new research frontiers of birational geometry and moduli spaces.

Acerca del autor

Elisabetta Colombo is Associate Professor of Geometry at the University of Milan. Her research field is complex algebraic geometry, and she studies mainly curves and abelian varieties and their moduli.
Barbara Fantechi is Full Professor in Geometry at SISSA-ISAS in Trieste. Her research interests include deformation theory, derived algebraic geometry, and stacks.

Paola Frediani is Associate Professor of Geometry at the University of Pavia. Her research area is algebraic geometry, in particular moduli spaces of curves and abelian varieties and Hodge theory.

Donatella Iacono is a Researcher in Geometry at the University of Bari. Her research focuses on deformation theory and differential graded Lie algebras in algebraic geometry.

Rita Pardini is Full Professor of Geometry at the University of Pisa. Her research area is algebraic geometry, especially surfaces and their moduli, irregular varieties, and coverings.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.