Birational Geometry and Moduli Spaces

· · · ·
· Springer INdAM Series Livre 39 · Springer Nature
E-book
200
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic symplectic manifolds, Severi varieties, degenerations of Calabi-Yau varieties, uniruled threefolds, toric Fano threefolds, mirror symmetry, canonical bundle formula, the Lefschetz principle, birational transformations, and deformations of diagrams of algebras. The intention is to disseminate the knowledge of advanced results and key techniques used to solve open problems. The book is intended for all advanced graduate students and researchers interested in the new research frontiers of birational geometry and moduli spaces.

À propos de l'auteur

Elisabetta Colombo is Associate Professor of Geometry at the University of Milan. Her research field is complex algebraic geometry, and she studies mainly curves and abelian varieties and their moduli.
Barbara Fantechi is Full Professor in Geometry at SISSA-ISAS in Trieste. Her research interests include deformation theory, derived algebraic geometry, and stacks.

Paola Frediani is Associate Professor of Geometry at the University of Pavia. Her research area is algebraic geometry, in particular moduli spaces of curves and abelian varieties and Hodge theory.

Donatella Iacono is a Researcher in Geometry at the University of Bari. Her research focuses on deformation theory and differential graded Lie algebras in algebraic geometry.

Rita Pardini is Full Professor of Geometry at the University of Pisa. Her research area is algebraic geometry, especially surfaces and their moduli, irregular varieties, and coverings.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.