Birational Geometry and Moduli Spaces

· · · ·
· Springer INdAM Series Część 39 · Springer Nature
E-book
200
Strony
Oceny i opinie nie są weryfikowane. Więcej informacji

Informacje o e-booku

This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic symplectic manifolds, Severi varieties, degenerations of Calabi-Yau varieties, uniruled threefolds, toric Fano threefolds, mirror symmetry, canonical bundle formula, the Lefschetz principle, birational transformations, and deformations of diagrams of algebras. The intention is to disseminate the knowledge of advanced results and key techniques used to solve open problems. The book is intended for all advanced graduate students and researchers interested in the new research frontiers of birational geometry and moduli spaces.

O autorze

Elisabetta Colombo is Associate Professor of Geometry at the University of Milan. Her research field is complex algebraic geometry, and she studies mainly curves and abelian varieties and their moduli.
Barbara Fantechi is Full Professor in Geometry at SISSA-ISAS in Trieste. Her research interests include deformation theory, derived algebraic geometry, and stacks.

Paola Frediani is Associate Professor of Geometry at the University of Pavia. Her research area is algebraic geometry, in particular moduli spaces of curves and abelian varieties and Hodge theory.

Donatella Iacono is a Researcher in Geometry at the University of Bari. Her research focuses on deformation theory and differential graded Lie algebras in algebraic geometry.

Rita Pardini is Full Professor of Geometry at the University of Pisa. Her research area is algebraic geometry, especially surfaces and their moduli, irregular varieties, and coverings.

Oceń tego e-booka

Podziel się z nami swoją opinią.

Informacje o czytaniu

Smartfony i tablety
Zainstaluj aplikację Książki Google Play na AndroidaiPada/iPhone'a. Synchronizuje się ona automatycznie z kontem i pozwala na czytanie w dowolnym miejscu, w trybie online i offline.
Laptopy i komputery
Audiobooków kupionych w Google Play możesz słuchać w przeglądarce internetowej na komputerze.
Czytniki e-booków i inne urządzenia
Aby czytać na e-papierze, na czytnikach takich jak Kobo, musisz pobrać plik i przesłać go na swoje urządzenie. Aby przesłać pliki na obsługiwany czytnik, postępuj zgodnie ze szczegółowymi instrukcjami z Centrum pomocy.