Birational Geometry and Moduli Spaces

· · · ·
· Springer INdAM Series Cartea 39 · Springer Nature
Carte electronică
200
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic symplectic manifolds, Severi varieties, degenerations of Calabi-Yau varieties, uniruled threefolds, toric Fano threefolds, mirror symmetry, canonical bundle formula, the Lefschetz principle, birational transformations, and deformations of diagrams of algebras. The intention is to disseminate the knowledge of advanced results and key techniques used to solve open problems. The book is intended for all advanced graduate students and researchers interested in the new research frontiers of birational geometry and moduli spaces.

Despre autor

Elisabetta Colombo is Associate Professor of Geometry at the University of Milan. Her research field is complex algebraic geometry, and she studies mainly curves and abelian varieties and their moduli.
Barbara Fantechi is Full Professor in Geometry at SISSA-ISAS in Trieste. Her research interests include deformation theory, derived algebraic geometry, and stacks.

Paola Frediani is Associate Professor of Geometry at the University of Pavia. Her research area is algebraic geometry, in particular moduli spaces of curves and abelian varieties and Hodge theory.

Donatella Iacono is a Researcher in Geometry at the University of Bari. Her research focuses on deformation theory and differential graded Lie algebras in algebraic geometry.

Rita Pardini is Full Professor of Geometry at the University of Pisa. Her research area is algebraic geometry, especially surfaces and their moduli, irregular varieties, and coverings.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.