Brain Network Analysis

· Cambridge University Press
电子书
343
评分和评价未经验证  了解详情

关于此电子书

This tutorial reference serves as a coherent overview of various statistical and mathematical approaches used in brain network analysis, where modeling the complex structures and functions of the human brain often poses many unique computational and statistical challenges. This book fills a gap as a textbook for graduate students while simultaneously articulating important and technically challenging topics. Whereas most available books are graph theory-centric, this text introduces techniques arising from graph theory and expands to include other different models in its discussion on network science, regression, and algebraic topology. Links are included to the sample data and codes used in generating the book's results and figures, helping to empower methodological understanding in a manner immediately usable to both researchers and students.

作者简介

Moo K. Chung is an Associate Professor in the Department of Biostatistics and Medical Informatics at the University of Wisconsin, Madison and is also affiliated with the Department of Statistics and Waisman Laboratory for Brain Imaging and Behavior. He has received the Vilas Associate Award for his research in applied topology to medical imaging, the Editor's Award for best paper published in the Journal of Speech, Language, and Hearing Research for a paper that analyzed CT images, and a National Institutes of Health (NIH) Brain Initiative Award for work on persistent homological brain network analysis. He has written numerous papers in computational neuroimaging and two previous books on computation on brain image analysis.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。